投稿须知
  《陕西师范大学学报(自然科学版)》是教育部主管、陕西师范大学主办的综合性自然科学学术性期刊,现为双月刊。我刊现为中国科技期刊卓越计划入选期刊、 ...

基于多特征提取与优选的冬小麦面积提取

作者:杨蕙宇 王征强 白建军 韩红珠

关键词: 遥感; 冬小麦; GF-1; 随机森林; 特征选择;

摘要:选取2015年10月至2016年6月冬小麦生长期9个关键时相的GF-1 WFV影像为数据源,综合多时相的光谱特征、植被指数特征与纹理特征,设置4组特征组合方案进行对比分析;并根据特征重要性进行特征选择,得到最优的特征子集建立随机森林分类模型,对河南省许昌市地物类型进行分类并实现冬小麦种植面积的提取。结果表明:在没有进行特征选择的情况下,4种特征组合中,综合多种特征类型的D组分类精度最高,经过特征选择后,各组分类精度均得到不同程度的提高,说明通过多种类型的特征变量综合与特征优选均可有效地提高分类精度;不同特征类型以及不同时相的特征变量对分类的贡献率不同,贡献率由大到小为植被指数、光谱指数、纹理特征,冬小麦生长季的2月、3月、5月、6月比其他月份对分类精度的贡献率更高;河南省许昌市冬小麦面积为2 258.7 km2,分类的总体精度达到95.18%,Kappa系数为0.925 5,其中冬小麦的制图精度与用户精度均达到98.67%。 


上一篇:《关中——天水经济区生态系统服务研究》书评
下一篇:基于PS-DInSAR的太原市城市地表形变监测

版权所有 陕西师范大学   陕ICP备:05001611
地址:西安市雁塔区长安南路199号 邮编:710062